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RELATIONS AMONG WIND, TEMPERATURE, PRESSURE, AND DENSITY, WITH PARTICULAR 
REFERENCE TO MONTHLY AVERAGES 
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ABSTRACT 

The three-dimensional fields of horizontal wind, vertical wind, pressure, and density are expressed as functions 
of the temperature, the density, and the lapse rate a t  a given height. Computations with the formulas for monthly 
values are carried out and compared with observations. It is found, in agreement with other authors, tha t  at a height 
of about 8 km. there exists a constant density surface. This allows us to cxpress the horizontal wind as a function of 
the temperature and the lapse rate. 

A kinematic method to compute the vertical wind is given. The numerical computations show tha t  the use of a 
geostrophic wind is a good working method for the computations of vertical wind when one deals with average states 
over periods of a month. 

1. INTRODUCTION 

In previous papers [l], [2] a preliminary model to  com- 
pute monthly mid-tropospheric and surface temperatures 
from the heat sources and sinks has been developed. The 
basic equations used are those of conservation of thermal 
energy in the vertically integrated troposphere and in the 
layer below the surface of the earth. 

I t  is evident that the wind field is coupled with the 
temperature field and with the heat sources and sinks, 
and that it must, therefore, be generated within the model. 
Its obvious role in the conservation of thermal energy 
equation is in the advective terms, but it appears also in 
other important ways. For example, the heat lost from 
the surface of the oceans by evaporation and vertical 
turbulent transport, and the transport of energy by ocean 
currents depend on the surface wind. 

The primary purpose of this paper is to develop for- 
mulas expressing the wind as a function of temperature in 
order to  incorporate it as a variable in a thermodynamic 
model which is being developed as an extension of the 
previous work. However, the paper includes also other 
developments that may be of general interest to the reader. 

2. HORIZONTAL WIND AS A FUNCTION OF 
TEMPERATURE AND DENSITY 

We shall use the equations of hydrostatic equilibrium, 
perfect gas, and geostrophic wind, which are the following: 

1 ap* fv*=,, &- 

(3) 

(4) 

where T*, p * ,  p* are the three-dimensional fields of 
temperature, pressure, and density respectively; u* and v* 
are the components along the x and y axes respectively of 
the horizontal wind, the x axis points to  the east, the y -  
axis to  t,he north, and the vertical z axis upward; g is the 
acceleration of gravity, R the gas constant, and f the 
Coriolis parameter. 

We shall consider a layer in the troposphere in which 
the lapse rate will be assumed independent of height, but 
a function of the horizontal coordinates and time. There- 
fore 

T*= -O(z--H) + T (51 

where p is the lapse rate, and T i s  the temperature at  the 
arbitrarily chosen level H,  which is also a function of the 
horizon tal coordinates and time. 

From (I) ,  (2), and ( 5 )  it follows that 

where Fl is an arbitrary function of 5, y, and t. For z=H 
the relation between pressure and temperature is obtained 
from (6) by dropping the star superscripts. Therefore 
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where p i s  the density a t  z=Hand p=pRT is the pressure 
also at  z=H. Substibting (8) and (9) in (3) and (4), we 
obtain 

--[z-H+-ln f T* B (3142 - (11) 

Formulas ( 5 ) ,  (8 ) ,  (9), (lo), and (11) express the three- 
dimensional fields of temperature, pressure, density, and 
horizontal wind as functions of the temperature, the den- 
sity, and the lapse rate at the arbitrary surface H .  

CASE 1. WHEN H IS THE HEIGHT OF AN ISOBARIC SURFACE 

Of special interest is the case in which H is the height 
of an isobaric surface. In this case, sincep is constant, from 
(2) it follows that the sum of the t,wo first terms in the 
right side of equations (10) and (11) is zero. Therefore, 
the wind at  any level in an atmospheric layer can be 
computed from the height and the temperature of an iso- 
baric surface, and the mean lapse rate in the layer. 

Using observed values of 500-mb. heights and 500-mb. 
temperatures, we shall carry out computations with mean 
monthly averages for February 1964 and February 1962. 
To avoid the use of arbitrary normals we shall compute the 
difference of these two cases as a test of computations for 
departures from normal. 

Figures 1A and 1B show the zonal and meridional wind 
components for February 1964 at 2=3 km. (which cor- 
responds roughly to the 700-mb. level), computed from 
formulas (10) and ( l l ) ,  with 500-mb. heights, 500-mb. 
temperatures, and a constant lapse rate equal to 6.5' C. 
km.-' These results are in good agreement with the 
corresponding wind components computed geostrophically 
directly from the 700-mb. heights, which are shown in 
figures 1C and 1D. 

Figures 2A and 2B show sea level pressure values (z= 0) 
computed with formula ( 8 ) ,  from 500-mb. temperature 
and heights using the same constant lapse rate as above. 
Figure 2A shows the values for February 1964 and figure 
2B the difference, February 1964 minus February 1962. 
Comparison with the corresponding observed values, given 
in figures 2C and 2D, shows good agreement. 
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CASE 9. WHEN THE DENSITY IS CONSTANT AT A GIVEN 
CONSTANT HEIGHT 

In  this case the second and third terms of the right side 
of equations (10) and (11) are equal t o  zero. Therefore, 
the horizontal wind at  any level in an atmospheric layer 
can be computed from the temperature at  the level z=H, 
where the density is assumed constant, and from the mean 
lapse rate in the layer. 

It is easy to see that the solution will depend on the 
choice of the level H of assumed constant density. Com- 
putations using H= 5.5 km. yield horizontal winds which 
are about 30 percent higher than the geostrophic winds a t  
the corresponding levels computed from the heights of 
isobaric surfaces. 

If we raise the level of assumed constant density the 
wind intensity in the solution increases, and at  a level 
equal to  about 8 km. we find the best agreement with the 
geostrophic wind. 

Figures 3 and 4 show the results of such computations. 
Figures 3A and 3B are the values for February 1964 of the 
zonal and meridional wind components at  500 mb., com- 
puted using formulas (10) and (11) with constant p,  

H=8 km., and T equal to the temperature at  5.5 km. 
minus the lapse rate multiplied by 2.5 km. Figures 3C and 
3D are the corresponding values computed geostrophically 
from 500-mb. heights. 

Figures 4A and 4B show the values of the differences 
February 1964 minus February 1962 of the zonal and 
meridional wind components at  500 mb. computed as- 
suming a constant density at 8 km.; and figures 4C and 
4 D  the corresponding values computed geostrophically 
from 500-mb. heights. 

This agreement suggests that at  the 8-km. level the 
contribution of the terms containing dp/by and b p / d z  in 
formulas (10) and (11) is a minimum. Therefore, this level 
seems to be the best approximation to  a constant density 
surface. 

This result can also be obtained by a direct computation 
of the density from formula (9), by using 500-mb. tem- 
peratures and heights, and taking p= RT/500 mb. Com- 
putations with a constant lapse rate equal to 6.5'c. or 
with a mean observed lapse rate show that at the surface 
of the earth the air density increases from lower to  higher 
latitudes. This gradient of the density decreases with 
height, and at a level of about 8 km. it is equal to zero. 
Above this level the density gradient as a function of 
latitude is reversed (the density then decreases from 
lower to  higher latitudes) and increases with height. 

Searching in the extensive meteorological literature one 
finds that several authors ([3], [4], 151, [8] ,  [9]) have found 
already from observations that indeed there exists a 
constant density surface (isopycnic surface) at a height 
of about 8 km. 
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FIGURE 1.-The horizontal wind for February 1964 a t  700 mb., in meters per second. (A) and (B) are the values of the zonal and meridional 
components respectively, computed with the formulas from 500-mb. values. (C) and (D) are the corresponding values computcd 
geostrophically from 700-mb. heights. 

3. COMPUTATION OF THE VERTICAL WIND 
The problem of computing the vertical wind from ob- 

served meteorological data has been the subject of several 
papers. Panofsky [7] has given an excellent survey article 
and more recently Jensen [6] made computations for the 

whole Northern Hemisphere using 1958 data. For a 
complete bibliograPhY on this subject the reader is 
referred t o  the references in both of these publications. 

The continuity equation contains the vertical wind and 
its first derivative with respect to the vertical coordinate. 



534 MONTHLY WEATHER REVIEW VOI. 95; NO. ,8 

FIGURE 2.--Sea lcvel pressure, in nib. (A) shows thc values for February 1964 and (B) the values of thc difference, February 1964 minus 
February 1962, computed from 500-mb. temperatures and heights and a constant lapse rate. (C) and (D) are the corresponding ob- 
served values. 

Therefore by solving a linear first order differential 
equation it is possible t o  obtain a formula for the vertical 
wind. The solution depends on the horizontal component 
of the wind and the density and its local rate of change. 

where 

The continuity equation can be written as 
1 3P*  el=;, 
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FIGURE 3.-HorizontaI wind a t  the 500-mb. height for February 1964 in meters per second. (A) and (B) are the values of the zonal and 
meridional wind components respectively, computed from the temperature at a height of 5.5 km. assuming a constant density at a 
height of 8 km. (C) and (D) are the corresponding values computed geostrophically from 500-mb. heights. 

(14) 

p* is the density, u* and v* are the components along the 
2 and y axes, respectively, of the horizontal wind, the 

w* is the vertical wind, z is the vertical coordinate meas- 
ured from the sea level, and t is the time variable. 

If we know u*, u*, p*,  and dp*/dt then we can compute 
w* from (12)* The is 

S&2Q&+G P* (15) w*= 
Q3 z axis points to the east and the y axis to the north. 
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FIGURE 4.-Horizontal wind differences, February 1964 minus February 1962, at 500 nib., in meters per second. (A) and (B) are the values 
of the differences of the zonal and meridional wind components, respectively, computed from a temperature at a height of 5.5 km., 
assuming a,constant density at a height of 8 km. (C) and (D) are the corresponding values computed geostrophically from 500-mb. 
heights. 

where Cz is an arbitrary function of the horizontal the lower boundary of the considered atmospheric layer 
coordinates and time and i t  follows that 

Q , = e f  Bid2 (16) 

From the condition that the vertical wind is known at  
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FIGURE 5.-Vertical wind at a height of 7 km. above sea level. (A) shows the computed values for February 1964, using the geostrophic 
divergence kinematical method and (B) the values for January 1958 computed by Jensen [6] with the adiabatic method. (C) is the 
component due to  the horizontal variations of density; and (D) is the component tha t  depends on J (f, p) . 

where HL is the height of the lower boundary and wL is 
the vertical wind a t  z=HL. 

where F=(SQ2Q3dz)/Q3 and a=gIRP. 

Assuming dp*/dt=O and using (5), (9), (lo),  and (ll), 
we obtain from (18), after integration, the following 

Substituting (17) in (15) we obtain 

( P* 1 z =*, 
[WL- ( m Z = H L 1  (18) formula w*=F+- 

P* 

.. 269-089 0 - 61 - 6 
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where TL=(T*)z=HL and 

GI = R T * / y  

G ' = ~  RT* [ 1 -a 1n ($71 

where F2= 2 - H+ T*/P(a+ 1 ) . 

The functions J ( f ,  H ) ,  J ( f ,  TI, J ( f ,  PI, J(P, H )  and 
J(0, T )  are Jacobians (e.g., J(P, T)=(bp/bz) (bT/&y)- 
(bP/dy) (bT/dz)).  

We shall carry out computations with a one-layer model 
atmosphere. Therefore in this case the lower boundary of 
the layer is the surface of the earth. 

In  formula (11) the term (TL/T*)a-'wL, which depends 
on the surface wind, is negligible, except in mountainous 
terrain, where i t  can become very important. 

The terms containing J( f ,  H), Jcf, T), and JV, a), 
which depend on the variation of the Coriolis parameter, 
correspond to the solution when bp*/bx and bp*/by are 
neglected, as is bp*/bt. 

The terms containing J(0, H) and J(P, T )  which depend 
on the horizontal variations of the lapse rate (bplbx and 
bfl/by), are due to the horizontal variations of the density 
(bp*/bx and dp*/by). 

To estimate the total vertical wind and its components 
we need to know the temperature a t  the isobaric surface 
H ,  the generalized lapse rate in the layer, 0, and the 
vertical wind a t  the surface, wL. 

We will choose H as the 500-mb. height. The vertical 
wind a t  the surface of the earth will be taken as zero. 
Therefore, in mountainous terrain we expect erroneous 
computed values. However, on a hemispheric scale the 
possible errors introduced with this simplification are 
geographically fixed and of relatively small extent. 

As generalized lapse rate, P, in this one-layer model, we 
will use the lrtpse rate from 700 to 300 mb. 

Figure 5A is the total vertical wind computed using 
formula (19) for February 1964 a t  a height of 7 km. 

Figure 5B is the total vertical wind in the layer 500-300 
mb., which corresponds roughly to the same height of 7 
km., for January 1958 computed by Jensen [6], using an 
adiabatic method, which is completely independent of our 
kinematic method. Figure 5B shows similar general pat- 
terns and values as figure 5A. Although we are comparing 
our results with a different winter month of a different 
year, this rough agreement verifies the consistency and 
soundness of our approach. 

Figure 5C shows the contribution to  the solution by the 
variations of the density. Its comparison with figure 5A 
shows that the most important component of the vertical 
wind is the one due to the horizontal divergence (bu*/'dx+ 

Figure 5D shows the term of the solution that contains 
JU, a), which is the contribution of the horizontal di- 
vergence component from the horizontal variations of the 
lapse rate. It is in general negligibly small compared with 
figure 5A, except in lower latitudes where, because of the 
variation of the Coriolis parameter, i t  can become im- 
port ant . 

In the above computations, for the sake of simplicity 
we considered a one-layer model. However it is evident 
that formula (19) can also be applied successively to each 
of the individual layers of a multiple-layer model to ob- 
tain the vertical motion in each layer. To do this i t  is 
necessary to specify the vertical wind and the temperature 
at  the surface of the earth and the temperature and height 
at  the isobaric surfaces which separate the layers. 

bu*/by). 
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